类星体vs中子星

  相

  对

  论

  

  引力红移

  广义相对论认为,引力势强的地方,固有时间的流逝速度慢,也就是说离天体越近,时间越慢。这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,就会向光谱中红光方向移动,称为引力红移。宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论预言一致。上世纪60年代初, 物理学家在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播产生的红移,结果与广义相对论预言一致。

  

  引力场中的光线偏折

按照光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合概念,用普朗克公式E=hv和质能公式E=Mc^2 求出光子的质量,再用牛顿万有引力定律计算得到太阳附近的光的偏折角,是约0.87角秒。 而由广义相对论计算得到的偏折角是1.75角秒,为前者的两倍。1919年,一战刚结束,英国科学家爱丁顿领导的两支考察队,利用跨大西洋日全食的机会观测,得到的结果约为1.7角秒,而且刚好在相对论实验误差范围之内,引起误差的主要原因可能是太阳大气对光线的偏折。在现代,通过射电望远镜可以观测类星体的射电信号在太阳引力场中的偏折,而不必等待日全食这种稀有的机会。高精度的测量结果进一步证实了广义相对论的结论。 进一步,当星体光源发出的光在引力场(星系及黑洞)附近经过时,光线会像通过透镜一样发生弯曲,当光路经过引力场不同位置时, 这导致地面观测者看到若干个星体的成像, 此类引力透镜现象极其普遍地被天文学家观测到。

  

雷达回波时间延迟

  

广义相对论认为光子靠近引力场时,就会发生时间延迟效应。光线轨迹在引力场中弯曲, 使得其路径延长。这种的弯曲现象可以等价地看成是一种折射,相当于有效光速减慢,因此从空间某一点发出的信号,如果途经太阳附近,到达地球的时间将有所延迟。这一想法首先由美国物理学家夏比洛(Shapiro)于1964年提出,由此来检验广义相对论是否正确。 从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间。 如果太阳正好处于行星和地球的连线,那么信号往返时间较没有太阳的情况变长。如此,可以检验空间是否发生了弯曲,是否有时间延迟。 1960年代美国物理学家克服重重困难,完成了有关实验。 研究小组先后对水星、金星与火星进行了雷达实验,证明雷达回波确有延迟现象,太阳质量导致的雷达波往返的时间延迟将达到200毫秒左右, 结果与广义相对论预言相符。 近年研究人员试验月球作为反射靶,实验精度有所改善, 所得结果与广义相对论理论值一致。

编辑:赵卓雅 责编:王晓霞 终审:马家文